Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
Free Radic Res ; 57(1): 1-13, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2271376

ABSTRACT

As T cells transit between blood, lymphoid organs, and peripheral tissues, they experience varied levels of oxygen/hypoxia in inflamed tissues, skin, intestinal lining, and secondary lymphoid organs. Critical illness among COVID-19 patients is also associated with transient hypoxia and attenuation of T cell responses. Hypoxia is the fulcrum of altered metabolism, impaired functions, and cessation of growth of a subset of T cells. However, the restoration of normal T cell functions following transient hypoxia and kinetics of their phenotype-redistribution is not completely understood. Here, we sought to understand kinetics and reversibility of dichotomous T cell responses under sustained and transient hypoxia. We found that a subset of activated T cells accumulated as lymphoblasts under hypoxia. Further, T cells showed the normal expression of activation markers CD25 and CD69 and inflammatory cytokine secretion but a subset exhibited delayed cell proliferation under hypoxia. Increased levels of reactive oxygen species (ROS) in cytosol and mitochondria were seen during dichotomous and reversible attenuation of T cell response under hypoxia. Cell cycle analysis revealed maximum levels of cytosolic and mitochondrial ROS in dividing T cells (in S, G2, or M phase). Hypoxic T cells also showed specific attenuation of activation induced memory phenotype conversion without affecting naïve and activated T cells. Hypoxia-related attenuation of T cell proliferation was also found to be reversible in an allogeneic leukocyte specific mixed lymphocyte reaction assay. In summary, our results show that hypoxia induces a reversible delay in proliferation of a subset of T cells which is associated with obliteration of memory phenotype and specific increase in cytosolic/mitochondrial ROS levels in actively dividing subpopulation. Thus, the transient reoxygenation of hypoxic patients may restore normal T cell responses.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Reactive Oxygen Species/metabolism , T-Lymphocytes/metabolism , Cell Hypoxia , Hypoxia/metabolism , Oxygen/metabolism , Cell Proliferation , Phenotype
2.
Tsitologiya ; 64(2):105-115, 2022.
Article in Russian | Scopus | ID: covidwho-2026560

ABSTRACT

Chronic lymphopenia, more specifically, T-cell deficiency increases the risk of mortality from cancer, cardiovascular and respiratory diseases;serves as a risk factor for poor outcome in infections, such as COVID-19. Regeneration of T-lymphocytes is a complex multilevel process, many questions of which remain unanswered. The present review addresses two main pathways to increase the number of T-cells during lymphopenia: production in the thymus and homeostatic proliferation in the periphery. The literature data on the signals that regulate each pathway are summarized. Their contribution to the quantitative and qualitative restoration of the immune cell pool is considered. The features of the CD4+ and CD8+ T-lymphocyte regeneration are discussed. © 2022 Russian Academy of Sciences. All rights reserved.

3.
Cell Rep Med ; 1(6): 100081, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-1026729

ABSTRACT

Convalescing coronavirus disease 2019 (COVID-19) patients mount robust T cell responses against SARS-CoV-2, suggesting an important role of T cells in viral clearance. To date, the phenotypes of SARS-CoV-2-specific T cells remain poorly defined. Using 38-parameter CyTOF, we phenotyped longitudinal specimens of SARS-CoV-2-specific CD4+ and CD8+ T cells from nine individuals who recovered from mild COVID-19. SARS-CoV-2-specific CD4+ T cells were exclusively Th1 cells and predominantly Tcm cells with phenotypic features of robust helper function. SARS-CoV-2-specific CD8+ T cells were predominantly Temra cells in a state of less terminal differentiation than most Temra cells. Subsets of SARS-CoV-2-specific T cells express CD127, can proliferate homeostatically, and can persist for over 2 months. Our results suggest that long-lived and robust T cell immunity is generated following natural SARS-CoV-2 infection and support an important role of SARS-CoV-2-specific T cells in host control of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL